A Hybrid Associative Classification Model for Software Development Effort Estimation
نویسندگان
چکیده
A mathematical model that makes use of data mining and soft computing techniques is proposed to estimate the software development effort. The proposed model works as follows: The parameters that have impact on the development effort are divided into groups based on the distribution of their values in the available dataset. The linguistic terms are identified for the divided groups using fuzzy functions, and the parameters are fuzzified. The fuzzified parameters then adopt associative classification for generating association rules. The association rules depict the parameters influencing the software development effort. As the number of parameters that influence the effort is more, a large number of rules get generated and can reduce the complexity, the generated rules are filtered with respect to the metrics, support and confidence, which measures the strength of the rule. Genetic algorithm is then employed for selecting set of rules with high quality to improve the accuracy of the model. The datasets such as Nasa93, Cocomo81, Desharnais, Maxwell, and Finnish-v2 are used for evaluating the proposed model, and various evaluation metrics such as Mean Magnitude of Relative Error, Mean Absolute Residuals, Shepperd and MacDonell’s Standardized Accuracy, Enhanced Standardized Accuracy and Effect Size are adopted to substantiate the effectiveness of the proposed methods. The results infer that the accuracy of the model is influenced by the metrics support, confidence, and the number of association rules considered for effort prediction.
منابع مشابه
An Improved Algorithmic Method for Software Development Effort Estimation
Accurate estimating is one of the most important activities in the field of software project management. Different aspects of software projects must be estimated among which time and effort are of significant importance to efficient project planning. Due to complexity of software projects and lack of information at the early stages of project, reliable effort estimation is a challenging issue. ...
متن کاملAn Improved Algorithmic Method for Software Development Effort Estimation
Accurate estimating is one of the most important activities in the field of software project management. Different aspects of software projects must be estimated among which time and effort are of significant importance to efficient project planning. Due to complexity of software projects and lack of information at the early stages of project, reliable effort estimation is a challenging issue. ...
متن کاملAn Improved COCOMO based Model to Estimate the Effort of Software Projects
One of important aspects of software projects is estimating the cost and time required to develop projects. Nowadays, this issue has become one of the key concerns of project managers. Accurate estimation of essential effort to produce and develop software is heavily effective on success or failure of software projects and it is highly regarded as a vital factor. Failure to achieve convincing a...
متن کاملA Hybrid Intelligent Model to Increase the Accuracy of COCOMO
Nowadays, effort estimation in software projects is turned to one of the key concerns for project managers. In fact, accurately estimating of essential effort to produce and improve a software product is effective in software projects success or fail, which is considered as a vital factor. Lack of access to satisfying accuracy and little flexibility in existing estimation models have attracted ...
متن کاملType-2 Fuzzy Logic Approach To Increase The Accuracy Of Software Development Effort Estimation
predicting the effort of a successful project has been a major problem for software engineers the significance of which has led to extensive investigation in this area. One of the main objectives of software engineering society is the development of useful models to predict the costs of software product development. The absence of these activities before starting the project will lead to variou...
متن کامل